Difficulty in identifying mass extinctions amongst tetrapods (Late Permian – Early Jurassic)

Graeme T. LLOYD & Michael J. BENTON

Why the Late Permian – Early Jurassic?

• Period of major change amongst tetrapods
• Earliest: mammals, dinosaurs, pterosaurs, ichthyopterygians, sauropterygians, turtles, crocodiles, frogs, and caecilians
• Triassic bounded by two ‘Big 5’ events (+ third?)
• Received relatively little study
• Lacks a thorough analysis (Weems, 1992)
• Until now…
The Datasets

- 204 families and 810 genera
 - Stratigraphic range (stage)
 - Geographic range (continent)
 - Taxonomic class (amphibians/reptiles/mammals)
 - Body size (small/medium/large)
 - Diet (invertebrates/tetrapods/browser/fish/molluscs)
 - Habitat (marine/freshwater/terrestrial/aerial/arboreal)
Origination and Extinction

- Origination and Extinction seem to support end-Permian and end-Triassic events
- There is no evidence to support an end-Carnian event
Proportional Familial Representation by Class

Proportional Generic Representation by Class
Summary of Ecological Change

- End-Permian event consistently associated with ecological change
- Marine taxa suffer a major extinction at the end-Carnian whilst mammals radiate
- End-Triassic significant only in ecological conservation
Pairwise Association I:
Late Permian – Early Jurassic tetrapods

Pairwise Association II:
K-T bivalves*

*(Data from McClure and Bohonak, 1995)
Pairwise Association III: Conclusions

- Cause and effect impossible to discern
- Taxonomic selectivity may imply non-preservation of traits
- Great constraints on tetrapod evolution
- Could different variables be used?
- Geological signals are pervading the data
- New methodology required

Phylogeny to the rescue? I:
Darwin identifies the problem

“[We continually over-rate the perfection of the geological record, and falsely infer, because certain genera or families have not been found beneath a certain stage, that they did not exist before that stage.”

The Origin of Species (1859)
Phylogeny to the rescue? II: Virtues of ghost range over stratigraphic range usage

- Boosts sample size - more stage-crossing taxa
- Corrects collection biases (e.g. Rauhut, 2003: Gondwanan vs. Laurasian theropods)
- Corrects preservation biases (e.g. pterosaurs vs. sauropterygians)
- Ghost range variations \leq MPTs
- Fills 'certain' gaps (e.g. E. Cretaceous choristoderes, M. Jurassic pterosaurs etc.)
- Tetrapods are phylogenetically well understood
- But, requires massive trees and range extension asymmetric
- Effects every analysis undertaken here

Conclusions

- End-Permian extinction important event in tetrapod evolution
- Important ecological changes also occur at end-Carnian; lack of an extinction signature possibly a timing issue
- Interpreting end-Triassic problematic due to poor Early Jurassic record
- High pairwise association of variables prevents determination of causation (selectivity)
- Genus is a valid species proxy in tetrapod macroevolution
Mark Buckingham supplied the initial data on Late Permian tetrapods as well as helpful comments and suggestions. The Palaeontology Discussion Group (PDG) at the University of Bristol gave constructive feedback on an early version of this presentation, I am particularly indebted to Pam Gill and Phil Donoghue for their advice.